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of the aircraft flight plans in the mid term horizon. As a consequence, our method combines
the short term safety guarantees provided by navigation functions with the long term
optimality and constraint satisfaction guarantees (in terms of airspeed, turning radius etc.)
provided by model predictive controllers. The efficiency of the approach is demonstrated
on simulations involving a number of aircraft converging in planar configurations.

Nomenclature

L Cost Function
T Sampling time
N Prediction Horizon
Θ Control inputs
O Navigation Function (as viewed by Model Predictive Controller)
Φ Navigation Function
qi Position of aircraft i in planar Cartesian coordinates
θi Heading angle of aircraft i
ui Longitudinal velocity of aircraft i
ωi Angular (Yaw) Velocity of aircraft i
ri Radius of the protected space of i-th aircraft
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I. Introduction

The current Air Traffic Management system is based mostly on a human-operated centralized system
architecture. Despite working reliably for many years, this system is reaching its limits. A potential solution
to this problem can be the use of computational tools in order to simplify the tasks of human operators.1

The Air Traffic Control (ATC) problem can be divided in several problems, which have to be solved in
parallel; predicting the trajectory of the aircraft, given weather forecasts and flight plans, predicting conflicts
(losses of separation), resolving conflicts, etc. We will focus on the latter problem, ensuring the necessary
separation between aircraft.

Many ways of dealing with Conflict Resolution (CR) have been proposed in the literature.2 CR algorithms
can be divided into Long Term (horizon of hours - Flow Management problems3,4), Mid Term (horizons of
tens of minutes5,6) and Short Term CR (horizons of minutes). Several algorithms have been proposed
individually in each of these categories. The large uncertainties involved in ATC (weather forecast errors,
pilot actions, modeling errors, etc.), make the solutions to the problem more conservative the longer the
horizon. On the other hand, solving a problem locally for a short horizon generally ignores longer term
goals for the aircraft. There seems to be no systematic approach in literature for a more complete solution,
combining algorithms from two or more categories.

Our main goal in this paper is to take a first step towards combining Mid Term CR techniques with
the use of Short Term CR. The aim is to reduce conservatism when solving the Mid Term problem, while
providing conflict avoidance guarantees of Short Term CR algorithms.

For the Short Term problem, we deploy methods involving artificial potential fields, widely used for the
motion control of mobile robots. Aircraft will be considered as agents, navigating through the potential field
using Navigation Functions, a method which drives the agent away from conflicts and towards its goal. While
being always able to generate a conflict-free solution for every problem configuration, navigation functions do
not take into account aircraft constraints (e.g. minimum/maximum thrust), generating infeasible solutions
for the aircraft.

Even though constraint handling cannot be done by the short term CR algorithm, there is still some
freedom when choosing the goal for each aircraft’s navigation function. In our approach, the Mid Term CR
problem would then be to find the optimal Short Term goal for the Navigation Function with respect to the
problem constraints. We formulate this as a receding horizon optimization problem. Since our problem is
non-convex, analytic solution for each finite horizon optimization cannot be found. Thus, we approximate
the optimal solution using randomized optimization methods with proven convergence properties.7

The article is organized as follows. Section II describes the Navigation Functions method used and
Section III introduces briefly Model Predictive Control. Section IV provides all the details relevant to the
model used. Simulation results are presented in Section V. Finally, conclusions and directions for possible
future work are presented in Section VI.

II. Navigation Functions

A. Introduction

Navigation Functions have been introduced by Rimon and Koditschek8 as a modified Potential Field method
for robot navigation and path planning. In its original form the navigation function methodology addressed
problem involving a single robot and a number of stationery obstacles. The main advantage that navigation
functions offer is provable convergence to the destination as well as guaranteed collision avoidance. Because
of this significant characteristic navigation functions have gained a lot of attention in the robotics and control
communities, while lately the methodology is being used in Air Traffic Control applications.9

A Navigation Function produces a potential field whose negated gradient is attractive towards the desti-
nation and repulsive with respect to any obstacles present in the available workspace. Thus the gradient of
such a potential field can provide almost global a, navigation to the goal position and away from obstacles.
This is achieved without the need for any adhoc strategies and in a computationally efficient manner.

aAs Koditschek and Rimon have demonstrated8 strict global navigation is not possible as every obstacle introduces at least
one saddle point in the potential field. Nevertheless the sets of initial conditions that drive the system to these saddle points
are of measure zero.
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B. Technical Details

Given a compact connected analytic manifold F with boundary, a Navigation Function is a map φ : F → [0, 1]
with the following properties:

1. It is analytic on F ,

2. It has only one minimum at qd ∈
o

F where qd denotes the destination and
o

F the interior of F ,

3. Its Hessian at all critical points (zero gradient vector field) is full rank, and,

4. limq→∂F φ(q) = 1

The general form of a Navigation Function is:

Φ =
γd(

γk
d + G

)1/k
(1)

where γd is the squared distance between the agent and its destination, while function G is by construction
an indicator of the proximity to obstacles, as it tends to zero when a collision is imminent,and increases
when the danger of any collision is fading, and k is a positive design parameter.

Following Rimon and Koditschek’s work, navigation functions have been expanded to multiagent-multirobot
systems, both in centralized10 and decentralized schemes,11 as well as non-holonomic vehicles in single agent12

and multiagent situations.13 In addition applications include formation control,14 while lately an expansion
to 3-dimensional problems is in progress.15

C. Navigation Functions for ATC

Recently Navigation Functions have been used in ATC-like problems,9 as the framework has been expanded
to problems that share a number of characteristics found in ATC: non-holonomic vehicles, decentralized
decision making and control and limited sensing. The guaranteed performance is very appealing for ATM
applications where safety is of the outmost importance, especially in local, Short-Term conflict resolution.
Nevertheless Navigation Functions pose a number of difficulties when used in aircraft conflict detection and
resolution, as the resulting trajectories do not in general comply with the input constraints of an aircraft.
The potential is “myopic” as its value depends only on the current position of each aircraft and consequently
the aircraft may be driven to configurations from which extreme inputs are required to escape.

III. Model Predictive Control

As already mentioned, one important drawback of the use of navigation functions is that they cannot
guarantee any constraint satisfaction on the trajectory to reach their target. In our case, this can result
in agents having to stop, to travel in circles for some time etc. This is not a problem in robotics, or even
ground vehicle control, where the agents can stop and start again, but the situation is different for aircraft,
since physical and aerodynamic reasons impose constraints on the minimum and maximum speed, thrust,
turning angle etc.

To overcome this problem we employ the technique of Model Predictive Control (MPC),16 a control
methodology developed specifically to deal with state and input constraints. At each time step t we will
employ a mid-term conflict resolution algorithm, finding the optimal way points for the aircraft for a finite
horizon NT . Then, after T minutes, the mid-term conflict resolution problem will be solved again for a
horizon NT . The solution of the finite horizon optimization problem at each time step will be the input for
the navigation functions, which will then guarantee conflict avoidance for the next T minutes, before a new
solution is calculated.

Using this technique, we indirectly endow the navigation functions with the ability to “predict” future
and avoid problematic encounters. The MPC algorithm will view the Navigation Function as an oracle O,
which, given the current position Xt of all aircraft and a goal position for each aircraft Θ (something like an
intermediate flight plan), returns the input and state trajectory (U(·) : [t, t+NT ] → R2, X(·) : [t, t+NT ] →
R2 respectively) for all aircraft. The cost function L(X(·),U(·)) ∈ R to be minimized depends on the output
of the Navigation Function. The system constraints can then be imposed on X(τ) and U(τ).
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Given: - Cost function L
- Dynamic constraints (X(·),U(·)) = O(Xt,Θ)
- State and input constraints X(τ) ∈ X,U(τ) ∈ U
- Sampling time T
- Horizon N

initialization:
t = 0

repeat:
Measure current position Xt

Solve
minΘ L(X(·),U(·)) Θ∗ = arg min L(X(·),U(·))

s.t. X(τ) ∈ X ∀τ ∈ [t, t + NT ]
U(τ) ∈ U ∀τ ∈ [t, t + NT ]
(X(·),U(·)) = O(Xt,Θ)

Apply (X(·),U(·)) = O(Xt,Θ∗) for τ ∈ [t, t + T ]
Set t = t + T

until True

Table 1. MPC Algorithm

Then, the whole MPC algorithm can be summarized in Table 1. Appropriate design parameters N and
T have to be chosen. Then, the cost function L can reflect either some long-term goals for the aircraft (e.g.
reach their goal as fast as possible), or even the constraints on the state/input, penalizing solutions that
violate the constraints etc.

IV. Model Description

A. Model of the Vehicles

The problem under consideration involves N aircraft flying inside a planar circular workspace of radius rworld

at a constant flight level, while avoiding collisions with each other. Each aircraft i, i = 1, . . . , N is modeled
as a planar nonholonomic circular vehicle of radius ri, where ri represents the radius its protected airspace.
The position and orientation of vehicle i are qi = [xi, yi]

T and θi respectively. The motion of each vehicle is
described by the following equations:

q̇i =

[
u cos θi

ui sin θi

]
(2a)

θ̇i = ωi (2b)
u̇i = ai (2c)

where ui is the longitudinal (linear) velocity, ai the longitudinal acceleration and ωi the angular velocity
of vehicle i. The state of each vehicle is then ni = [qT

i , θi, ui]T while its input is vi = [ai, ωi]T .

B. CD&R using Navigation Functions

Navigation Functions in their original form are not suitable for the control of a non-holonomic, aircraft-like
vehicle, as they do not take into account the kinematic constraints that apply on such a vehicle. Use of the
original Navigation Function as introduced by Koditschek and Rimon17 with a feedback law for the control of
a nonholonomic vehicle can lead to undesired behavior, like having the vehicle rotate in place.12,18 In order
to overcome this difficulty Dipolar Navigation Functions have been developed18 which offer a significant
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advantage: the integral lines of the resulting potential field are all tangent to the desired orientation at the
origin, eliminating in most cases the need for in-place rotation at the origin, as the vehicle is driven there
with the desired orientation. This is achieved by using the plane whose normal vector is parallel to the
desired orientation and includes the origin, as an additional artificial obstacle.

The Navigation Function used in this paper is:

Φi =
γdi + fi

((γdi + fi)k + Hnhi ·Gi · β0i)
1/k

(3)

The above Navigation Function is constructed as explained in detail in Ref.19 The function Gi represents
the distance from any possible collisions involving vehicle i: Gi is zero when the i − th vehicle participates
in a conflict, and takes positive values away from any conflicts, γdi = ||qi − qid||2 is the distance from the
destination position qid and fi = fi is used in proximity situations in order to ensure that Φi attains positive
values even when agent i has reached its destination.

As the workspace is considered spherical with radius rworld, the workspace bounding obstacle is β0i =
r2
world − ||qi||2 − r2

i .
The term Hnhi renders the potential field dipolar. As explained before it is responsible for the repulsive

potential created by the artificial obstacle used to align the trajectories at the origin with the desired
orientation θdi:

Hnhi =εnh + nnhi (4)

nnhi =([cos θi sin θi] · (qi − qid))
2 (5)

(6)

where εnh is a small positive constant.
Finally, k is a positive tuning parameter for this class of Navigation Functions.

The potential field function given above has been used in Ref.20 and has proven navigation properties
i.e. it provides global convergence to the destination along with guaranteed collision avoidance. To better
demonstrate the properties of a Dipolar Navigation Functions a simple field potential without any obstacles
is presented in Figure 1. It can been seen that the surface x = 0 divides the workspace of radius rworld = 50
in two parts, and forces all the integral lines to approach the target (0, 0) parallel to the y axis.
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Figure 1. Potential Field created by a Dipolar Navigation Function

Each vehicle i is governed by the following control law:20

ai = −ui {|∇iΦi · JIi|+ Mi} −Kbiui − ui

tanh (|ui|)KuiKzi (7a)

ωi = −Kθik (θi − θid − θnhi) (7b)
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where Φi = Φi(qi) is the above Dipolar Navigation Function (3), Kzi = ||∇iΦi||2 + ||qi − qid||2, with Kbi,
Kui, KΦij

positive real gains, and Mi is a positive scalar parameter tuned to satisfy

Mi >

∣∣∣∣∣∣
∑

j 6=i

(∇iΦj) · [cos θi sin θi]

∣∣∣∣∣∣
max

(8)

The functions sgn and atan2 are:

sgn(x) ,





1, if x ≥ 0

−1, if x < 0
(9)

atan2(y, x) , arg (x, y) , (x, y) ∈ C (10)

The angle θnhi is the angle of the gradient ∇Φi:

θnhi , atan2 (sgn(pi)Φiy, sgn(pi)Φix) (11)

where Φix = ∂Φi

∂xi
, Φiy = ∂Φi

∂yi
and pi = [cos θi sin θi] · (qi − qid) is the current position vector with respect

to the destination, projected on the longitudinal axis (xid) of the desired orientation.
The above control law (7) offers guaranteed convergence to the target as well as collision avoidance,21

but does not guarantee that the motion will respect any aerodynamic or mechanical constraints present.

C. Using MPC with Navigation Functions

As mentioned before, Mid Term CR problem will be solved using MPC. For this purpose, and since the
Navigation Function’s control inputs are the targets of the agents, the finite horizon optimization problem
will be executed over all possible targets for the aircraft that will respect the system constraints.

One can easily find in literature many tools for solving MPC problems in linear, quadratic, or, more
general, convex problems. This is not the case in the non-convex problems, since the optimum to the
problem cannot be found in a computationally tractable manner. Unfortunately, our problem falls into this
category, since each finite horizon optimization problem is non-convex.

In order to deal with this complexity issue, we use randomized optimization algorithms. Randomized
optimization algorithms are a very promising method in this context, since they can inherently deal with
the complexity of the problem, with reasonable computational workload. There are several methods falling
into this category, such as genetic algorithms, simulated annealing etc. While all seem to work with more
or less the same efficiency, only few have theoretical convergence to the optimum in finite time. This is the
reason we chose the method described in Ref. 7. This method is a variation of Simulated Annealing that
works both for deterministic and expected value criteria.

The concept behind this randomized optimization algorithm is that, while randomly searching and trying
to find the minimizer of the cost function, from time to time, accept a worse solution (instead of accepting
only better solutions). This helps the algorithm overcome local minima and continue exploring the search
space.

The algorithm used is summarized in Table 2. It should be noted that one of the most important factors
that can determine the convergence rate of the randomized algorithm towards the minimum of the cost
function at each step of the algorithm is the appropriate choice of the proposal distribution g(Θ) from
which we sample the proposed solutions. At each time step of the MPC, a randomized optimization takes
place. After an initialization step, where a first input sequence for the navigation functions is generated,
the algorithm generates another input for the navigation functions (the targets of the navigation functions).
These inputs can be viewed as intermediate waypoints, provided to the aircraft by the Mid Term CR
algorithm. Then, the trajectories for the next N time periods are calculated for all aircraft and the cost
function is evaluated for this solution. If this solution leads to a lower cost, it is accepted by the algorithm,
else it is accepted with a (low) probability ρk or rejected with a (high) probability 1− ρk. The optimization
stops when the algorithms reaches the maximum number of steps and the algorithm keeps the best solution
and applies it for the next T minutes and the MPC algorithm progresses one step further. The algorithm
stops executing when all aircraft have reached (approximately) their targets.
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MPC initialization:
Set t = 0
initialize X(t)

repeat:
initialization:
Set k = 0
Generate Θ0 = {Θ(t), . . . ,Θ(t + (N − 1)T )} ∼ g(Θ)
Calculate (X(t + (i− 1)T + 1), . . . ,X(t + iT ),U(t + (i− 1)T + 1), . . . ,U(t + iT )) =

= O(X(t + (i− 1)T ),Θ(t + (i− 1)T ))
∀i ∈ {1, . . . , N}

Set C0 = L(X(t + 1), . . . ,X(t + NT ),U(t + 1), . . . ,U(t + NT ))
repeat:
Set k = k + 1
Generate Θ̃ = {Θ̃(t), . . . , Θ̃(t + (N − 1)T )} ∼ g(Θ)
Calculate (X̃(t + (i− 1)T + 1), . . . , X̃(t + iT ), Ũ(t + (i− 1)T + 1), . . . , Ũ(t + iT )) =

= O(X̃(t + (i− 1)T ), Θ̃(t + (i− 1)T ))
∀i ∈ {1, . . . , N}, using X̃(t) = X(t), Ũ(t) = U(t)

Set C̃ = L(X̃(t + 1), . . . , X̃(t + NT ), Ũ(t + 1), . . . , Ũ(t + NT ))

Set ρk = min

{
Ck−1

g(Θk−1)
g(Θ̃)

C̃
, 1

}

Set [Θk , Ck] =





[Θ̃ , C̃] with probability ρk

[Θk−1 , Ck−1] with probability 1− ρk

until k = maxsteps
Find j : Cj = min{C1, . . . , Cmaxsteps}
Calculate (X(t + T ),U(t, . . . , t + T − 1)) = O(X(t),Θj(t))
Apply U(t, . . . , t + T − 1))
Set t = t + T

until |(xi(t), yi(t))− (xfinal
i , yfinal

i )| < ∆, for all aircraft i

Table 2. MPC using Randomized Optimization Algorithm

V. Simulation Results

The major drawback of the Navigation Functions is their inability to handle constraints. In this section
we show how one can exploit the properties of Model Predictive Control to force the Navigation Functions
to respect the constraints posed. In A, a first approach allowing the Navigation Functions to handle the
speed constraints of an aircraft cruising is presented. Optimization over all feasible solutions with respect to
the constraints, while minimizing a given performance function for the system is presented in B and a study
on more complex situations involving more aircraft is presented in C.

A. Speed Constraints

As a first example, suppose we have the situation shown in Figure 2. In this case, all three aircraft are
converging to the same point (0,0). Suppose that we employ only the use of Navigation Functions to solve
this problem. Indeed, Navigation Functions easily solve this situation, as shown in Figure 3. A closer look
in the Figure 4 though says otherwise. The traveling aircraft have a speed that is constantly decreasing and
converges asymptotically to zero, as the aircraft approach their destination.

This problem is inherent in Navigation Functions and heavily depends on the distance of the aircraft-
agents from their destination. In order to try to resolve this problem, at each time step of the MPC algorithm,
a new target will be calculated, such that the speed in each horizon stays within the given limits for the
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Figure 4. Aircraft speed for this solution.

aircraft. We suppose that all three aircraft are of type Airbus A321, flying at 33000ft. From Ref. 22, we get
that the airspeed at this altitude can vary in the region [366, 540] knots, with a nominal value of 454 knots.
We will enforce these constraints on our controller.

For the optimization problem, we set the time step T = 3 minutes and the prediction horizon N = 6, i.e.
the controller every 3 minutes will search for a solution that does not violate the constraints for the next 18
minutes. For this very first example, we will only consider this feasibility problem rather than optimizing
over all feasible solutions. Thus, the cost function will have the following form:

L =

{
1 if ui(τ) ∈ [366, 540] ∀i ∈ {1, 2, 3}, ∀τ ∈ [t, t + NT ]
100 else

(12)

Solving the optimization problem described in Section IV.C, we obtain the results presented in Figures 5,
6. The graphs clearly indicate the ability of the MPC controller to handle the system constraints, and thus,
feed the Navigation Functions with flight plans that can let aircraft navigate autonomously (i.e. without any
ground support), while still respecting the necessary speed limits. The running time of this experiment is
around 3 sec on a dual-core Pentium 3.2GHz, which makes it quite efficient. Of course, since the optimization
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function only takes into consideration the violation of the speed constraints, the solution is suboptimal in
others aspects, such as smoothness of the trajectory, time of arrival for the aircraft, etc. Nevertheless, one
should note that all aircraft converge to their target in less than 60 minutes, while in the previous case, more
than 300 minutes were needed. Finally, no conflicts arise, as aircraft are kept at all times more than 40nm
far away.
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Figure 5. Solution for 3 aircraft encounter by the
use of MPC with Navigation Functions.
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Figure 6. Aircraft speed for this solution.

B. Speed Constraints with some performance criteria

It is obvious that the constraint handling (feasibility problem) is easily achieved by the MPC algorithm.
Thus, we proceed into introducing some performance criteria for the optimization algorithm to maximize.
As a first criterion, we use the distance to the final destination at the end of the prediction horizon for each
aircraft. In this case, the cost function we try to minimize is:

L =

{ ∑
i D(i, t + NT ) if ui(τ) ∈ [366, 540] ∀i ∈ {1, 2, 3}, ∀τ ∈ [t, t + NT ]

∞ else
(13)

where the function D(i, t) denotes the Euclidean distance between the position of aircraft i at time t and its
final destination.

Assuming the same configuration as in the previous section, solving the new optimization problem, we
obtain the results presented in Figures 7 and 8. In this case the algorithm produces a solution for which
the aircraft have to travel much less, while the speed constraints are respected. This comes as no surprise,
since while optimizing over the distance at the end of the horizon, the aircraft avoid unnecessary turns and
try instead to follow the straightest path to their final destination. Thus, only aircraft 2 takes more than 50
minutes to arrive at its final destination, while all other aircraft arrive earlier. For this performance criterion,
we optimized over 300b different random solutions at each step of the MPC and the result was obtained in
around 5 minutes, making the algorithm 10 times faster than real time. Finally, another interesting thing
to notice is that using this performance criterion, the algorithm becomes less conservative, as aircraft come
close up to 15nm. This is again far from having a conflict, confirming the theory.

One could claim that the aircraft trajectories do not look smooth like the ones produced by the navigation
functions. Let us just note that the trajectories produced by the navigation function (see Figure 3) would
normally ask aircraft to fly in arc-like trajectories of circles, whose radii are more than 100nm. This is rarely
acceptable by pilots, as they prefer to fly straight.

Furthermore, it would seem more natural to force aircraft to fly as much as they can in straight lines. In
order to enforce such a performance metric, we adjust our cost function as following:

bIn general, one should choose this number to ensure that the solution is “close enough” to the optimal. In our case, we
chose this number such that all the simulations of this chapter could be applied in a real-time implementation.

9 of 12

American Institute of Aeronautics and Astronautics



−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

x(nm)

y(
nm

)

Figure 7. Solution for 3 aircraft encounter by the
use of MPC with Navigation Functions using dis-
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Figure 8. Aircraft speed for this solution.

L =





∑
i D(i, t + NT )

(∏N
j=1 |θi(t + (j − 1)T )− θi(t + jT )|

)(1/N)

if ui(τ) ∈ [366, 540]

∀i ∈ {1, 2, 3},∀τ ∈ [t, t + NT ]
∞ else

(14)
In this setting, we penalize all solutions that require aircraft to turn often. The results we obtained are

shown in Figures 9, 10. In this case, the controller tries to make aircraft fly as straight as possible, while all
conflicts are avoided. We should notice that in this case the running time was a bit more, as the algorithm
needed around 8 minutes to arrive at this solution. Nevertheless, the algorithm remains more than 5 times
faster than the actual flight time, making it appropriate for real-time implementation.
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Figure 9. Solution for 3 aircraft encounter by the
use of MPC with Navigation Functions using (14)
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Figure 10. Aircraft speed for this solution.

In general, one may extend the cost function to any function and here we just provide the reader with
two examples that might be used for this purpose.

C. Extension to more complex traffic situations

One of the main advantages of the navigation functions is their ability to solve even very complex situations.
To make our problem more challenging, we will add another three aircraft, performing the exactly opposite
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flights, e.g. aircraft 4 will fly from the last to the first waypoint of aircraft’s 1 flight path etc. This results
in 6 aircraft converging to the same point (0, 0) that have to be deconflicted.

Indeed, navigation function can handle well with the situation, resolving all conflicts. This is depicted in
Figure 11. In this case, aircraft are asked to travel on a circle of radius around 190nm until they reach their
destinations. The normal constraints on the minimum and maximum speed that aircraft can fly are again
violated. The corresponding plot is omitted for the sake of brevity.
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Figure 11. Solution for 6 aircraft encounter given
by Navigation Functions.
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Figure 12. Solution for 6 aircraft encounter by
the use of MPC with Navigation Functions.

Extending the cost function (14) for 6 aircraft, we simulated our control scheme. The algorithm converged
to the solution shown in Figure 12. For the sake of brevity, aircraft speeds are not presented, as nothing
extraordinary occurs in this encounter. The desired constraints are handled by the controller and the solution
presented is much less conservative than the one provided by the navigation functions. One might note that
the solution in this case does not seem very realistic, but the scenario itself is a rather extreme scenario,
that is unlikely to occur in practice. The main point of this simulation is to demonstrate the ability of the
controller to handle even extraordinary situations like the one presented here. The execution time for this
case was around 30 minutes, which still makes it possible to be applied in a real-time environment.

VI. Conclusions

A novel method for conflict resolution for aircraft flying in a self-separation airspace has been presented.
The simulation results clearly indicate that the combination of Navigation Functions for the short term and
Model Predictive Control for the mid term conflict resolution can still guarantee conflict avoidance, while
minimizing a performance cost over all admissible solutions.
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